2017年江西公务员考试数学运算习题演练(30)
1.某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名:
A.10
B.11
C.12
D.13
2.某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24个小时。如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位降至安全水位?
A.10
B.12
C.14
D.16
3.某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。
A.3
B.4
C.5
D.6
参考答案与解析:
1.B【解析】要使行政部门少,则其他部门应尽量多,即所有部门尽可能平均分,65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11名。
2.B【解析】牛吃草问题。设原有水量为N,水库每小时的入库量为x,则根据题意有N=(10-x)×8,N=(6-x)×24,解得,x=4,N=48。因此当打开8个泄洪闸时,用时48÷(8-4)=12小时。
3.D【解析】比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。